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1. Introduction

The linear selection index developed by H. F. Smith {19367 is a linear
combination of the elements of the phenotypic observation vector X

JJ

I.=Db'X, 1
X (1)

where Ij denotes the composite index value asgsociated with the jth nmember of a
population and b is an n-vector of unknown coefficients (weights). This index
was conceived to aid in discriminating between selection programs among varisties
of plants. Assuming Xj was distributed as a multivariate normal with covariance
matrix P, Smith showed that the optimal choice of b (i.e., yielding greatest
expected genetic advance) is

b = P-lGO/ > (2)

where G is the genotypic covariance mabrix and o is an n-vector of economic weights.
Since Smith's paper much research has been conducted on the linear index

and its nonlinear competitors. Notable among these are Henderson [19637, Kempthorne

and Nordskog [1959), Williams [19627, Hazel [19437 and VanVieek [19707. See

Williams for a thorough review.
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Smith and Pfaffenberger (19707 considered index estimation using multivariate
normal phenotypic observations, both full and partially complete vectors, assuming
G and o are known, but P unknown. This procedure applied a technique of Hocking
and Smith [19687 for estimating the parameters of & multivariate normal distribution
in the presence of partizl data. All data is used ahd several alternate methods
are presented for indexing those individuals possessing partial records. A
contrast between Henderson's technigues and that of Smith and Pfaffenberger
(8=P in the sequel) is given.

This paper considers the linear selection index as described by (1) with ©
chosen as in (2) assuming both full and partial records are available and that
the phenotypic wvectors follow a multinomial distribution. Thusg, this index deviates
both from the assumption that the phenotypic covariance matrix is known and from
the assumption of normality.

in estimation procedure similar to that of Hocking and Oxspring [1971@ is
discussed and certain simulation studies are presented to support the claimed
optimality properties. In addition, the S$S-P multivariate normal technique is

applied to multinomial data for comparison with the multinomial estimation procedure.

2. Estimation Procedure

Consider a phenotypic observation vector X' = (Xl oon Xk) which ig digtributed
multinomially with known parameter M and unknown parameters €' = (61 cao G?}s
That is,
B(x . 3 X) M k+l x ,
= X' = ® 0 2 = i
52 d 2 s <k+l ) ‘!Tl e (3)

mx,!
j=19




k k
=M - ) =1~ T 0O. 7 si i ector fron
where Xk+l M j§1xj and 2 1 j§163 We de31re'to index each vector from

a population distributed as (3); however, some of these vectors have missing
elements (recall that any marginal distribution from a multinomial is again
multinomial in form). As in Smith and Pfaffenberger [19707] all information, both

full and partial vectors, is utilized in estimating S ., ..., Gk and thus to

13
estimating each individual's index, assuming G and ¢ known.

Following the outline of Hocking and Smith [19687 group the data vectors by
which elements are missing, estimate within each group the available 955 and then

optimally combine these estimates. For example, consider a population of size N

where n. individuals have recorded all elements of the phenotypic observation

1
vector while n2 individuals have only the first (renumbering if necessary) £ <k
elements recorded, ny + n, = N. Thus, from the full data group each parameter

A~
o
o,

13
group (partial data) only G], vee, B

Gj can be estimated unblasedly by s =1, ..., k, whereas from the second

g, cen be estimated by 293, Jd=1, .5 4s
In each case, the usual maximum likelihood estimates are used. Combining these

estimates as in Hocking and Smith yields

k. (L}

Note that A5 = (alj’ cens afd) is chosen to minimize the variance of ejg J= ks eeos K

It A% does not depend on the parameters 0', then ej is ﬁnbiased and minimum
variance. In general, Sj igs consistent, asymptotically unbiased and asymptotically
efficient when full data estimates of &' are used in Aj.

A general formulabion for Aj can be given. Let V be the covariance matrix

of (Xl, coes XK). Thus,

V = Diag (8) - 69' .
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~

Then the covariance matrix of 19' is given by V/nlM and for 26' by D

D2 = (I{’Z 0) and I, is an identity matrix of order 4. Thus,

2VD2/52Mﬁ where

LA o -1

a=f.. L] =« —5— (©,;) DV .
.Ai.j ny + 0, 2 2 2
A 0= _0 'z .

Note that D, &= ,9, vhere 8 (el, s e)&)

If in addition, there is a third data group of n3 multinomial vectors with

parameters M and D is a s X k unitary matrix of ones and zeros, then new

0, D
37773 R
estimates would combine B with f 5.¢, the estimates from this third group. In

373

such a case, in matrix notation

~

9=96+B'(D6 - .8) .

~

Note that D3 makes 6 conformable to 8. B is chosen to winimize the variance of

3

2 and satisfies

[DB(W + V/n3M)Dé]B = D3W ,

where W 1s the covariance matrix for the combined first two data groups. That is,

i

-1 -1
W E(V/nlM) + DA(DVDL)/n M)D, ]

-1
? t
{nl + n, VDE(DQVDZ)DZ] V/M .
To estimate ©' when more than three groups of data are available, continue in the

fashion outlined above, producing at each stage the estimated asymptotic covariance

matrix of the combined estimate for use at the next stage.
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Now to achieve an estimste based on all data the final estimate of &' is used
8

for estimation of the covariance matrix P, That is, in the case above 5 is

o~

substituted for ej in the formulation of P yielding a matrix §. Then set

-~
~

With b an index for each phenctypic vector can be given; in those cases of missing
data the final estimate for the mean of that element is substituted to produce a
full vector to index. In general, the procedure yields consistent and asymptotically
efficient estimates. Note that estimated phenotypic means, variances and covariances

are available upon termination.

fxample 1: Let k = 3, 4 = 2, as above. Then,

~

8= 0+ A(D29 -

~

26) .

. _ /(1 0 0
In this case D2 = (O O) and

.

-1 0 o /(L-08 -8)]
2

n, g 1 2
A= n, +n ‘ *
1 2 |
- 8./(1L -6, -~ 8
L o -1 8/( 1 2>‘
2 i qei i .5 ¢ £ ) 7
Thus, Gl and 62 are just the weighted sums of 1bl’ 281 and 162, 20 respectively,

and are unbiased and minimum variance. Note, however, that the coefficients for

0. depend on 6', thus 8, will be a consistent, asymptotic efficient estimate when

3 3
9., is substituted s d = .
1% is ciaétl uted for GJ, i=1,2, 3
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Example 2: Consider the same situation as in Example 1, but with a third data

group, s = 1. Then
0 =90+ B(el - 391) )
where
D.=(1 0 O
3 ( )
and
'91(1-- el)/(nl + n2)§
. r 1 1> 1
B=- ~ (n ot o Gl(l - el)J 9192/(n1 + n2)
1 2 3
6163/(1’11 T 1’)2)
1
- n
- 3
- T TR ) 8,/ (1 - el) .

L93/(1 - 91)J

Agzain the coefficient depends on the parameters to be estimated, but substitution

by the "best” previous estimates (i.e., 0) yield consistent and asymptotically

efficient estimates.

Ixample 3: Consider the same situation as in Example 1, but with a third data

group containing information on X, and X_.

2 3

~ . 2 32
8 =06+ C'

where
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and
-1 =
- _e - - 8 mera
i 92(1 92) 263 9192 92(1 oz) 585 @
P 3
nl+n2+n3
-0,.9 0,(1~-6 -8_8 -6_9 6. (1-6.)
273 3¢ 3)_ 173 273 3¢ 37 |
3. Simulation Studies
In the
In the following Monte Carlo simulation studies we set o' = (1 1 1) and

with 6' = (.15, .25, .40) in each case.
Table 1 records a summary of simulation studies (200 runs) of Example 2 where

M1 =M, = M3 = 20, n, = 100, n_ = 50, n_ = 25, and clearly indicates the greater

1 2 3

precision achieved by using the partial data vectors. Table 2 summarizes a gimilar

experiment with the same data configuration but in the presence of a much higher

percentage (80%) of partial data vectors (nl'= 10, B, = 15, ny = 25). Again
reductions in the sample variance of the estimates are noted. In both cases the
estimates of 8' are virtually unbiased but the estimabe of b' = (bl, o, bg) are

biased slightly upward. These examples, of course, are for a situation for which
we have "nested" data, and in such situations Hocking and Oxspring (19717 have
shown that this technique yields maximum likelihood estimates.

Tables 3 and 4 summarize simulation conducted on Example 3 but with two
different sample sizes. BEach of these tables again reflect the consistency of
the estimate and the reduction in variances achieved by utilizing the partial data.

Again there is some bias noted in the b term.
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Table 5 summarizes an -Example 2 experiment using theisame parameters as those

of Table 1. That is, 175 vectors X' = (Xl X ) were generated to follow a

2 X3
multinomial distribution with parameters M = 20, and ' = ( 9l 8, 63 )

Each of these vectors is indexed by equations (1) and (2) using the population
values for 6', The order resulting is called the "true" order. It is desired to
compare this order with the order resulting from estimated indexes in several
different cages., First, all 175 full data vectors are used to estimate 9' and P,
thus yielding an estimated index for each. The correlation between the estimated
ordering and the "true" ordering is given by the first entry of Table 5. HNext a
missing data situation is created by randomly selecting 75 vectors and deleting Xg

from 50 of them, and X, and X_ from 25 of them. Thus now we have avallable 100

2 3

full vectors and 75 partial vectors of two types. The procedure of Section 2 is
applied to estimate 0' and P (and thws b). The index order resulting is compared
to the "true" ordering yielding the second entry of the table. Finally, the
Smith-Pfaffenberger (19707 multivariate normal indexing technique is applied to
the partial multinomial data and the final entry is the correlation between the
resulting ordering and the true ordering. It should be noted that in the sbove
cace the partial data vectors were indexed by means of applying the estimated b
vector to the partial vectors where the missing element is in turn estimated by
its expected value in the multinomial case and by regression estimate in the mul-
tivariate normal case., Further explanation of the regression estimate in the
multivariate normal case 1s given in the paper by Smith and Pfaffenberger. [T

should be noted that the estimate of the population mean is precise as indicated

by the simuletion of estimates of SJ.
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Table 1

Simulation of Exemple 2 (nl = 100, n, = 500, ng = 25; 200 runs)

Mean Estimate

Parameter el = ,15 92 = .25 93 = 4o bl = 2383 b, = 2169 b3 = 212L
1st Data Group .1502 . 2507 Joos | 2horlk 2185.0 21h1.3
ond pdjoined .1496 .2515 ook, | 2h02.9 2184.9 2141.9
3rd Adjoined .1kg0 L2517 L4006 ohol b4 2183.2 21ko.2
Sample Variances of Estimates
8, 92 93 b, b, bB
1st Data Group .7976::10‘“ .9&19;;10'“'1.0223::10"3 7151.0 | 6115.8 6759.9
ond Adjoined RiTele’d .6386 .8862 6hok,8 | 5665.9 5725 .7
3rd Adjoined .3705 .6372 .8860 6394,8 | 5585.3 5648,8
Table 2

Simulation of Example 2 (nl =10, n

5 = 15, ny = 255 500 runs)

Mean Estimate

Parameter el = ,15 92 = .25 63 = 40 bl = 2383 b2 = 2169 b3 = 212k
| 1st Data Group .1503 .2515 .399k4 ol55,2 20762 2181.5
2nd Adjoined L1495 2515 .3999 2h38.6 2215,2 2171.3
3rd Adjoined L1493 .2516 .Loo1 o3l L 2213,9 2171.2

Sample Variances of Istimates

D

1 % % ° b, by

1st Data Group |.6766 % 1073, 8813 x 1073 1.939x 1073 83296.2 | 77727.3 TT6L7.3

WJY

2nd Adjoined .2816 L3781 8791 72107.6 | 67039.3 60450,

3rd Adjoined .1325 .3557 L8606 70834,9 | 65625.6 59290.9
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Table 3
Simulation of Example 2 (nl = 50, n, = 50, n3 = 50; 100 runs)
Mean Estimate
Parameter el = .15 92 = .25 93 = 4o bl = 2383.3 b2 = 2170 b3 = 2125
1st Data Group 1486 .251h .3995 2395.1 2171.8 2128.7
"2nd Adjoined .1488 L2511 .3995 2391.9 2170.8 2127.8
3rd Adjoined .1487 .2518 .3991 2391.7 2168.9 2127.6

Sample Variances of Estimates

N 6, 63 | By b, | b,j
) -
1st Data Group {1.063x10" 1.921;:10‘”1.651;:&1o"LL 12,832.8 | 9546.9 [10,163.6
2nd Adjoined 555 .969 1.4ko 10,686.5 8569.k | 9167.9
3rd Adjoined 512 .689 1.042 7407.8 7809.4 | 7300.4
Table L
Simulation of Example 2 (n1 = 10, n, = 15, ny = 25; 100 runs)

Mean Estimate

8, = .15} 6_ = .25 {6_ = .40 | b, = 2383.3 b2=2170 b3:£§}.25

1 2 3 1

1st Data Group L1506 L2514 .3992 ohsh .8 2227,1 { 2181.0
2nd Adjoined L1496 .2512 L4000 2h37.8 2215.1 21717
3rd Adjoined L1495 .2515 .3998 2418,7 2195,2 2152,3

Sample Variances of Estimates

e 1
1 62 93 bl b, o

(W8]

1st Data Group |.700%1075|.882x1075|1.215x1073(82,713.9 |77,909.5 | 77,430.

b

ond Adjoined .283 .360 .883 72,867.%  167,739.1 {61,087,

L

3rd Adjoined 243 .19k .297 25,302.4  {32,804k,3 |31,159.7




Table 5
Average Correlation With "True" Ranking (10 runs each) of Multinomial Data

Simulation of Example 2 (nl = 100, n, = 50, ny = 25)

Estimation Index Before Deletion 1 . 7hh8 L7236
Multinomial Estimates JTHL5 LTLTS
Smith-Pfaffénberger Multinomial . .7 356 . 7151

Normal Estimates v ‘
8' = (.15, .25, J40) | 87 = (.27, .08, .47)

L, Conclusions

In this paper we develop a linear selection index using phenotypic observation
vectors multinomially distributed and estimate the index value of each vector by
estimating in an optimal, sequential fashion the parameters of the parent multinomia
distribution. Moreover, the estimation procedure of Section 2 does not require that
all data records be full (i.e., have no missing elements), but only that there exist
full vectors. In addition, a vector with missing elements are indexed by multiply-
ing b by that vector with its missing elements filled by the combined mean estimate
(i.ee, M eJ.).

Thus, the index of Section 2 deviates from a "standard" index in that, first,
we estimate b by estimating P, and, second, the parent phenotypic vector distribution
is non-normal. We cite the results tabulated in Section 3 (Tables 1 to 4) as
empirical indications of the procedure's properties, viz., consistency and asymptotic
efficiency. For further theoretical justifications for a similar technigue see
Hocking and Oxspring [19717.

Note that in Table 5, the comparison of the ranking resulting from the S-P
multivariate normal procedure and the Section 2 procedure indicates that use of an

estimated index assuming a multivariate normal configuration does not lead to
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wwarranted results. Thus, the value of the Section 2 procedure would be in the
slightly more precise ordering achieved and since during the indexing process both
estimates of phenotypic means and covariance matrix are found.

Future problems include combining the multiveriate normal and multinomial
procedures to yield an index of vectors some of whose elements are continuously
distributed, others discrete. In addition, nonlinear competitors for both estimate

indices are being considered.
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